Finite Difference Schemes for the Tempered Fractional Laplacian
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملFinite difference Schemes for Variable-Order Time fractional Diffusion equation
Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variableorder time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investiga...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملFinite-Difference Schemes for the Diffusion Equation
Abst rac t . The Crank-Nicolson scheme is widely used to solve numerically the diffusion equation, because of its good stability properties. It is, however, ill-behaved when large time-steps are used: the short wave-lengths may happen to be less damped than the long ones. A detailed analysis of this flaw is performed and an Mternative scheme is proposed, which removes this difficulty while pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Mathematics: Theory, Methods and Applications
سال: 2019
ISSN: 1004-8979,2079-7338
DOI: 10.4208/nmtma.oa-2017-0141